ENSAE 2023/2024

Actuariat de l'assurance non-vie 2h00

Pas de document, pas de calculatrice.

Exercice 1 - Modèles linéaires généralisés (6 pts). Soit $(\mathbb{P}_{\theta})_{\theta \in \mathbb{R}}$ une famille de mesures de probabilité. On suppose qu'elle appartient à la famille exponentielle.

- 1. Soit $\theta \in \mathbb{R}$, rappelez la densité (par rapport à une mesure dominante) d'une telle loi en introduisant les fonctions mesurables a, b, c et le paramètre de dispersion ϕ .
- 2. Soit Y une variable aléatoire de loi \mathbb{P}_{θ} . Montrez que la fonction génératrice des moments de Y s'écrit sous la forme

 $g_Y(t) := \mathbb{E}\left(e^{tY}\right) = \exp\left(\frac{b(\theta + ta(\phi)) - b(\theta)}{a(\phi)}\right).$

3. Soit $(Y_i)_{1 \le i \le n}$ un échantillon i.i.d. de la même loi que Y. Montrez que

$$\overline{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$

fait parti de la même famille exponentielle avec un nouveau paramètre de dispersion qu'on précisera.

4. Chaque assuré subit les sinistres

$$S_i := \sum_{k=1}^{N_i} Y_k^i \quad 1 \le i \le n,$$

où, pour tout $1 \leq i \leq n$, il existe $\theta_i \in \mathbb{R}$ tel que $(Y_i^k)_{k \geq 1} \stackrel{i.i.d.}{\sim} \mathbb{P}_{\theta_i}$ où les $(\mathbb{P}_{\theta_i})_{1 \leq i \leq n}$ sont des lois issues du même modèle exponentiel (seul θ_i change, $a(\phi)$, b et c sont identiques). On se place dans le cadre des modèles linéaires généralisés, c'est à dire qu'il existe $\beta \in \mathbb{R}^d$ tel que

$$\theta_i := x_i' \beta, \quad 1 \le i \le n$$

où $x_i \in \mathbb{R}^d$ (la constante est ici incluse dans x_i). On introduit

$$\overline{Y}_i := \frac{S_i}{N_i} = \frac{1}{N_i} \sum_{k=1}^{N_i} Y_k^i, \quad 1 \le i \le n.$$

Montrez que

$$\underset{\beta \in \mathbb{R}^d}{\arg\max} \, \ell^Y((y_k^i)_{1 \leq k \leq N_i}^{1 \leq i \leq n}; \beta) = \underset{\beta \in \mathbb{R}^d}{\arg\max} \, \ell^{\overline{Y}}((\overline{y}_i)_{1 \leq i \leq n}; \beta)$$

où les (y_k^i) sont les observations des (Y_k^i) avec ℓ^Y la log-vraisemblance correspondante, et les (\bar{y}_i) sont les observations des (\bar{Y}_i) avec $\ell^{\bar{Y}}$ la log-vraisemblance correspondante. Dans les log-vraisemblances, les $(N_i)_{1 \leq i \leq n}$ sont fixés et considérés comme des constantes. On admettra la condition de second ordre.

Exercice 2 - Tarification a posteriori (3 pts) Pour un assuré $i \in \{1, ..., n\}$, on introduit N_i son nombre de sinistres. Pour X_i une variable aléatoire dans \mathbb{R}^d et Θ_i une variable aléatoire dans \mathbb{R}^q , $x_i \in \mathbb{R}^d$, $\theta_i \in \mathbb{R}^q$, on suppose que

$$N_i \mid \{X_i = x_i, \Theta_i = \theta_i\} \stackrel{i.i.d.}{\sim} \mathcal{P}(\lambda(x_i, \theta_i)),$$

où $\lambda: \mathbb{R}^d \times \mathbb{R}^q \to \mathbb{R}_+$ est une fonction mesurable.

- 1. Donnez $\mathbb{E}[N_i \mid X_i = x_i]$ en fonction des moments de $\lambda(x_i, \Theta_i)$.
- 2. Donnez $Var[N_i \mid X_i = x_i]$ en fonction des moments de $\lambda(x_i, \Theta_i)$.
- 3. Quels sont les estimateurs de $\mathbb{E}[N_i \mid X_i = x_i]$ et $Var[N_i \mid X_i = x_i]$ obtenus par le modèle linéaire généralisé dans la famille de loi Poisson avec surdispersion en notant \widehat{P}_i^N la prime pure estimée et $\widehat{\phi}$ la dispersion estimée?

1

Exercice 3 - Provisionnement (7 pts) Soit $(C_{i,j})_{1 \le i,j \le n}$ les montants cumulés des sinistres survenus en année i et à l'année de développement j. Soient $\mathcal{F}_k := \sigma(C_{i,j} \mid i+j \leq k+1)$ et $\mathcal{B}_k := \sigma(C_{i,j} \mid i+j \leq n+1, j \leq k)$. pour $1 \le k \le n$.

- 1. Rappelez les trois hypothèses H1, H2 et H3 du modèle de Chain Ladder Mack.
- 2. Donnez \hat{f}_j , l'estimateur de f_j pour $1 \le j \le n-1$.
- 3. On pose l'hypothèse:

H2' Pour $1 \le j \le n-1$, il existe $f_j \ge 0$ et $\sigma_j \ge 0$ tels que

$$C_{i,j+1} \mid \mathcal{F}_{i+j-1} \sim \mathcal{N}\left(f_j C_{i,j}, \sigma_j^2 C_{i,j}\right), \quad 1 \leq i \leq n.$$

Montrez que H2' implique H2 et H3. Pour les questions suivantes, on se place sous H1 et H2'.

- 4. Pour $1 \le j \le n-1$, montrez que l'estimateur du maximum de vraisemblance de f_i , avec l'observation des $(C_{i,j+1})_{1\leq i\leq n-j}$ conditionnellement à \mathcal{B}_i , est identique à \widehat{f}_i .
- 5. Pour $1 \le j \le n-2$, montrez que l'estimateur du maximum de vraisemblance de σ_i^2 , avec l'observation des $(C_{i,j+1})_{1 \leq i \leq n-j}$ conditionnellement à \mathcal{B}_j , peut s'écrire :

$$\widehat{\sigma}_{j}^{2} := \frac{1}{n-j} \sum_{i=1}^{n-j} \frac{(C_{i,j+1} - \widehat{f}_{j}C_{i,j})^{2}}{C_{i,j}} = \frac{1}{n-j} \sum_{i=1}^{n-j} C_{i,j} \left(\frac{C_{i,j+1}}{C_{i,j}} - \widehat{f}_{j} \right)^{2}.$$

En quoi est-il différent de celui donné pour Mack - Chain Ladder avec les hypothèses H1, H2 et H3 habituelles?

- 6. Pour $1 \leq j \leq n-1$, obtenez la loi de f_j conditionnellement à \mathcal{B}_j .
- 7. Pour $1 \leq j \leq n-2$, montrez que la loi de $\widehat{\sigma}_{j}^{2}$ conditionnellement à \mathcal{B}_{j} , dans le cas f_{j} connu, est :

$$\widehat{\sigma}_j^2 \sim \sigma_j^2 \frac{\chi_{n-j}^2}{n-j}.$$

Exercice 4 - Provisionnement (4 pts) Soient $(N_{i,j})_{1 \le i,j \le n}$ les montants des nouveaux sinistres survenus en année i et à l'année de développement j et $(D_{i,j})_{1 \le i,j \le n}$ l'évolution entre j-1 et j des sinistres survenus en année i et connus à l'année de développement j-1. Soient $\mathcal{F}_k := \sigma(N_{i,j}, D_{i,j} \mid i+j \leq k+1)$ et $\mathcal{B}_k := \sigma(N_{i,j}, D_{i,j} \mid i+j \leq k+1)$ $n+1, j \leq k$). pour $1 \leq k \leq n$.

- 1. Rappelez les trois hypothèses H1, H2 et H3 du modèle de Schnieper.
- 2. On se demande si le modèle est invariant par changement de monnaie. Les $N_{i,j}$ et $D_{i,j}$ sont en monnaie étrangère, et on introduit α le taux de change de la monnaie étrangère vers la monnaie domestique. On introduit les nouvelles quantitées en monnaie domestique, pour tout $1 \le i, j \le n$:
 - $N_{i,j}^{\alpha} := \alpha N_{i,j}$,
 - $D_{i,j}^{\alpha} := \alpha D_{i,j}$.

L'exposition $(E_i)_{1 \leq i \leq n}$ est ici le nombre de contrats de l'année i, elle est donc indépendante de α . On note $\widehat{\lambda}_i^{\alpha}$ et δ_j^{α} les nouveaux estimateurs de λ_j^{α} et δ_j^{α} avec les observations en monnaie domestique avec les observations des $(N_{i,j}^{\alpha}, D_{i,j}^{\alpha})$, et $\hat{\delta}_j$ les estimateurs en monnaie étrangère avec les observations des $(N_{i,j}, D_{i,j})$. Montrez

- $\hat{\lambda}_j^{\alpha} = \alpha \hat{\lambda}_j$, $1 \le j \le n$,
- $\widehat{\delta}_{j}^{\alpha} = \widehat{\delta}_{j}$, $1 \leq j \leq n-1$. 3. Soient $1 \leq i \leq n$ et $n-i+1 \leq j \leq n$. On rappelle l'estimateur des $C_{i,j}$ pour la partie inconnue :

$$\widehat{C}_{i,j} := \left(\prod_{k=n+1-i}^{j-1} (1-\widehat{\delta}_k)\right) C_{i,n+1-i} + E_i \sum_{k=n+2-i}^{j} \widehat{\lambda}_k \left(\prod_{\ell=k}^{j-1} (1-\widehat{\delta}_\ell)\right),$$

et $\widehat{C}_{i,j}^{\alpha}$ est défini de même mais avec les estimateurs obtenus sur les obervations $(N_{i,j}^{\alpha}, D_{i,j}^{\alpha})$. De même, on introduit les \hat{R}_i^{α} et \hat{R}^{α} respectivement les provitions de l'année i et les provisions totales obtenues avec les observations $(N_{i,j}^{\alpha}, D_{i,j}^{\alpha})$. Montrez que $\widehat{R}^{\alpha} = \alpha \widehat{R}$.

4. Le montant des provisions dépend-il de la monnaie utilisée?