ENSAE 2024/2025

ACTUARIAT DE L'ASSURANCE NON-VIE 2h00

Pas de document, pas de calculatrice.

Exercice 1 - Modèles linéaires généralisés (6 pts). Soit $\phi > 0$. On introduit la famille de probabilité définie par la densité (par rapport à la mesure de Lebesgue) :

$$f(y;\mu,\phi) = \frac{1}{\sqrt{2\pi y^3 \phi}} \exp\left(-\frac{(y-\mu)^2}{2\mu^2 y \phi}\right), \quad \mu > 0.$$

- 1. Montrez que cette famille de loi de probabilité appartient à la famille expotentielle avec $\theta := -\frac{1}{\mu^2}$ et on précisera les fonctions a, b et c. On notera $(\mathbb{P}_{\theta})_{\theta < 0}$ cette famille.
- 2. Soit $Y \sim \mathbb{P}_{\theta}$ pour $\theta < 0$. Calculez $\mathbb{E}(Y)$ et Var(Y).
- 3. En déduire la fonction de variance $\mu \mapsto V(\mu)$ et la fonction de variable normalisée $\mu \mapsto V_{\circ}(\mu)$
- 4. On fixe une fonction de lien $g(\mu_i) = x_i'\beta$, et sur des données $(y_i, x_i)_{1 \le i \le n}$, on estime $\widehat{\beta}$ et on en déduit $\widehat{\mu}_i$. Donnez un estimateur $\widehat{\phi}$ du paramètre de dispersion ϕ .
- 5. On propose d'utiliser la fonction de lien non canonique $g := \log$. Quel est l'avantage de cette fonction de lien, dans le cas présent, par rapport à la fonction de lien canonique?

Exercice 2 - Modèles linéaires généralisés (4 pts) Soit $(\alpha, \beta) \in \mathbb{R}^2$ et $(x_i, y_i)_{1 \le i \le n}$ un échantillon d'observations indépendantes. Nous nous plaçons dans le modèle linéaire généralisé avec loi de Poisson et fonction de lien canonique :

$$\mu_i := e^{\alpha + \beta x_i}, \quad 1 \le i \le n.$$

On introduit $\ell((y_i \mid x_i)_{1 \leq i \leq n}; \alpha, \beta)$ la fonction de log-vraisemblance correspondant aux observations $(y_i \mid x_i)_{1 \leq i \leq n}$.

1. Montrez que le gradient en (α, β) de ℓ est

$$\nabla \ell((y_i \mid x_i)_{1 \le i \le n}; \alpha, \beta) = \begin{pmatrix} -\sum_{i=1}^n e^{\alpha + \beta x_i} + \sum_{i=1}^n y_i \\ -\sum_{i=1}^n x_i e^{\alpha + \beta x_i} + \sum_{i=1}^n x_i y_i \end{pmatrix}.$$

2. On suppose de plus que $x_i \in \{0,1\}$ et que l'échantillon est ordonné (sans perte de généralité) de sorte que

$$x_i = 1,$$
 $1 \le i \le I,$
 $x_i = 0,$ $I + 1 \le i \le n.$

avec 1 < I < n.

Montrez que $(\widehat{\alpha}, \widehat{\beta})$ qui maximise la vraisemblance vérifie (on admettra qu'il s'agit d'un maximum) :

$$e^{\widehat{\alpha}} = \frac{\sum_{i=I+1}^{n} y_i}{n-I},$$

$$e^{\widehat{\beta}} = \frac{\sum_{i=1}^{I} y_i}{I} e^{-\widehat{\alpha}},$$

et en déduire l'estimateur de la moyenne $\hat{\mu}_i$ en fonction des deux valeurs possibles de x_i .

Exercice 3 - Provisionnement (7 pts). Soit $(C_{i,j})_{1 \le i,j \le n}$ les montants cumulés des sinistres survenus en année i et à l'année de développement j. Soient $\mathcal{F}_k := \sigma(C_{i,j} \mid i+j \le k+1)$ et $\mathcal{B}_k := \sigma(C_{i,j} \mid i+j \le n+1, j \le k)$. pour $1 \le k \le n$.

1

- 1. Rappelez les trois hypothèses H1, H2 et H3 du modèle de Chain Ladder Mack.
- 2. Donnez \hat{f}_i , l'estimateur de f_i , pour $1 \le j \le n-1$.

3. On pose l'hypothèse :

H2' Pour $1 \le j \le n-1$, il existe $f_j \ge 0$ et $\sigma_j > 0$ tels que

$$C_{i,j+1} \mid \mathcal{F}_{i+j-1} \sim \mathcal{G}\left(\frac{f_j^2}{\sigma_j^2}C_{i,j}, \frac{f_j}{\sigma_j^2}\right), \quad 1 \leq i \leq n,$$

où \mathcal{G} est la loi gamma.

Montrez que H2' implique H2 et H3. Pour les questions suivantes, on se place sous H1 et H2'.

- 4. Donnez l'estimateur habituel $\widehat{C}_{i,n}$ pour $1 \leq i \leq n$ et celui de \widehat{R} .
- 5. Proposez une méthode de bootstrap **complète** pour l'estimation de la loi des provisions et adaptée aux hypothèses *H1* et *H2*'.

Exercice 4 - Provisionnement (3 pts). Soient $N:=(N_{i,j})_{1\leq i,j\leq n}$ les nouveaux sinistres d'un portefeuille dont le premier indice est l'année d'occurrence et le second est l'année de développement et $D:=(D_{i,j})_{1\leq i,j\leq n}$ la décroissance des sinistres déjà déclarés. On note C le triangle associé des sinistres cumulés. Soit $N':=(N'_{i,j})_{1\leq i,j\leq n}$ et $D':=(D'_{i,j})_{1\leq i,j\leq n}$ un autre portefeuille. On suppose que

- (N,D) et (N',D') vérifient les hypothèses du modèle de Schnieper avec les mêmes paramètres $(\lambda_j,\sigma_j^2)_{1\leq j\leq n}$ et $(\delta_j,\tau_j^2)_{1\leq j\leq n-1}$,
- (N, D) et (N', D') sont indépendants.

Montrez que $(\overline{N}, \overline{D}) := (N + N', D + D')$ vérifie également les hypothèses de Schnieper avec les mêmes paramètres.